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Pseudopotential Calculations on Ion-Molecule 
Complexes 
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Pseudopotential calculations on some cation-molecule complexes - Li § Na +, K+/H20, 
H2 CO - are presented. Despite a rather crude approximation of Coulomb and exchange 
potentials a reasonably correct description of binding energies and intermolecular dis- 
tances is obtained. The inclusion of core polarization by a classical approximation does 
not change the calculated values very much, nevertheless the errors are reduced some- 
what. 
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1. Introduction 

Computational efforts to calculate the electronic structure of molecules increase tre- 
mendously with the number of electrons in a system. This difficulty has long been a 
serious obstacle for the investigation of molecules and molecular complexes containing 
heavy atoms by quantum mechanical methods. Several techniques have been proposed in 
the past [1-4] which make use of the well-established fact that "inner-shell" or "core"- 
orbitals do not change shape appreciably on molecule or complex formation. A few 
recent calculations using pseudopotential methods are mentioned here as representative 
examples. Kleiner and McWeeny [1 ] performed "valence-electrons-only" calculations on 
the molecules H2CO and NaC1. They applied a modification of a formalism developed 
by 13hrn and McWeeny [2] making use of semi-empirical projection operators whose 
parameters were fitted on atomic term values. Bonifacic and Huzinaga [3] reported 
pseudopotential calculations on the atoms Li through Ne. They too used empirical pro- 
jection operators but in conjunction with local potential terms. Chang et al. [4] calcu- 
lated atomic states for atoms of the 1st and 2nd row. The parameters of their potential 
were fitted to reproduce Rydberg series of the corresponding atoms. 

Here we present a simple formalism, containing no empirical parameters, which allows us 
to replace effects of inner-shell electrons by a non-local potential. The theoretical back- 
ground of pseudopotential calculations is outlined briefly and applied to some simple 
cation-molecule complexes. Finally, an estimation of the correction brought about by core 
polarization of the cations' inner shell electrons is presented. The results obtained are com- 
pared with Hartree-Fock-Roothaan (HFR) calculations using essentially the same basis sets. 

* Present address: Ruhr Universit~it Bochum, Institut fiir Thermo- und Fluiddynamik, Universit~its- 
strat~e 150, Postfach 2148, D-463 Bochum-Querenburg. 
** Author to whom requests for reprints should be addressed. 
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2. Method of Calculation 

In conventional HFR theory [5] the n orhitals describing a closed shell system with 2n 
electrons are obtained from a set of n coupled pseudo-eigenvalue equations: 

hvl ~li ) =eii ~i ), i = 1 . . . .  , n  (1) 

hF here denotes the Hartree-Fock operator, which consists of two groups of terms, one 
operating on single electrons and a sum of interaction terms, usually called Coulomb and 
exchange operators, which couple [ ffi ) with the other one-electron orbitals: 

zk 1+ (z,;-Kj) (2) 
x~-' I r/k I ] / 

Lagrangian multipliers ei, enter the theory in order to maintain mutual orthogonality of 
the orbitals [ ~i ): 

~ I ~j) = 6 u (3) 

Without this restrictive condition the valence electrons would collapse into the core. An 
attempt to vary valence orbitals independently of core orbitals necessarily violates this 
condition. It has been shown however [6-9], that variational collapse can be prevented by 
an operator which annihilates all core components contaminating a trial orbital i ~v p), usually 
called pseudo-orbital. 

Applying this operator it can be shown [6-9], that the HFR equations (1) are now valid 
in a modified form: 

[h v + VRI~P) = e v i ~  p)  (4) 

The operator VR is called pseudopotential, it performs a weighted projection of an 
arbitrary function onto the core space ([ ~e)}: 

VR = ~ I G ) ( e v -  e c ) ( G I  (5) 
C 

During the variational procedure I qJv p) converges to a valence orbital, which might well be 
contaminated with components of core functions. The valence pseudo-orbitals, of course, 
do form an orthogonal set. Optimization of valence pseudo-orbitals in (4), on the other 
hand, violates the orthogonality conditions between valence and core functions. Conse- 
quently, the core orbitals have to be reoptimized and thereby a certain restriction in the 
variability of pseudo-orhitals is introduced. 

Several approximations have now to be introduced in order to make the restricted varia- 
tion computationaUy more efficient than the full HFR optimization of all orbitals. The 
main simplifications are the following: 

1. Core and valence functions are in general expanded in a finite basis set and therefore 
represent only approximate eigenfunctions of the operator hF. Even in case eigen- 
functions were available they could not be transferred from one problem to another 
without losing this property. The reference core functions used here to describe the 
inner shells of the alkali-cations Li § Na + and K + were taken from calculations on 
the isolated ions with basis sets described in Table 1. 

2. In actual calculations only approximate numerical values for the core orbital 
energies, ee, are available. Here we have chosen the free cations as reference states 
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Table 1. Basis set definition a 

Molecule/ion Basis set 

H20b O: (9,5) [2,2] 
H: (4) [21 

H2CO c C/O: (5,3) [3,2] 
H: (2) [2] 

Li + Li: (9,1) [3,1]d; (4) [3] e 
Na + Na: (12,6,1) [5,3,1] f; (5) [4] e 
K + K: (17,11) [9,6]g; (7) [4] e 

a The notation X:(c~,fi,3" . . . .  ) [a,b,c . . . .  ] means, 
that c~ s-type,/~ p-type, 3' d-type, . . ,  orbitals were 
placed at atom X and contracted to a s-type, 
b p-type, c d-type, . . ,  orbitals respectively. 

b Orbital exponents and contraction coefficients 
were taken from Refs. [121 and [13]. 

c Orbital exponents and contraction coefficients 
were taken from Ref. [16]. 

d Orbital exponents and contraction coefficients 
were taken from Refs. [12] and [13]. 

e Truncated sets used in the pseudopotential 
calculation. 

f Orbital exponents and contraction coefficients 
were taken from Ref. [14]. 

g Orbital exponents and contraction coefficients 
were taken from Ref. [15]. 

and accordingly the energy values ec were taken directly from HFR calculations of 
the isolated ions. 

3. The calculations can be simplified considerably in case equal ev values are applied 
for all valence orbitals. As has been shown by Schwarz [10],  the individual ee and 
ev values can vary appreciably in the general case and the assumption of  equal 
valence state energies ev is not  well justified. The orbital energy differences 

lee - ev 1, however, were found to be roughly constant [10].  In the concrete 
examples discussed later, the valence state orbitals under consideration either do 
not  overlap appreciably with the core functions or correspond to ev values, which 
in absolute value are rather small compared to the ee's of  the alkaline cations. 
Consequently, the approximation l e~ - e~ I ~ l ec  I is valid to a reasonable degree 
of  accuracy and was applied here. 

4. Great numerical complications arise in case the influence of  Coulomb and exchange 
core electron potentials on valence electrons is taken into account rigorously. Sub- 
stantial simplification is achieved, however, by replacing these terms by an effective 
local potential .  In the following calculations that part  of  the Hartree-Fock operator 
(Eq. (2)) which describes the interaction of  the nucleus and the core electrons with 
the valence electron is replaced by a simple effective potential :  

Z k  Z k - n c 
- + E ( 2 : ~ -  K ~ ) ~ - -  (6) 

I r ik  I c I r ik  [ 

Here n c represents the total  number  of  core electrons and the summation index "c"  



8 W. Marius and P. Schuster 

Table 2. Molecular geometries 

H20 ROH: 1.80 a aHOH: 104.5 ~ 

H2CO RCO: 2 . 3 2  aHCH: 126 ~ 
RCH: 2.00 

a Atomic units are used throughout this paper. 
1 a.l.u. = 0.5291 A, 1 a.e.u. = 627.5 kcal/moh 

. 

runs over all core orbitals. In most cases Eq. (6) will be rather a very crude approxi- 
mation and leads to a reduction of an attractive contribution. Alkali cation-molecule 
complexes, however, are characterized by weak mutual penetration of the consider- 
ably populated orbitals. Consequently, the assumption of complete screening of the 
alkali nucleus by the core electrons is not an unrealistic assumption for the particular 
examples we are studying here. 
Finally, the two-electron part of the HF operator (by) was approximated by pseudo- �9 
valence orbitals instead of exact HF orbitals. To some extent this approximation 
compensates for the errors introduced by the two previous assumptions, 2 and 3 
[ 10]. Furthermore, small overlap between pseudovalence and core orbitals justifies 
this approximation very well. 

In case assumptions t-5 are incorporated into Eqs. (2) and (4) calculations on systems w4th 
heavy atoms are greatly simplified: 

1. In the SCF procedure less orbitals need to be explicitly evaluated since the core 
orbitals have been incorporated into the one-electron part of the Hartree-Fock 
operator. 

2. The number of basis functions may be reduced drastically because the oscillations 
of the valence orbitals in the vicinity of the nucleus which normally cause slow con- 
vergence can be smoothed out to a large degree [8]. 

The computation of the matrix elements of the pseudopotential operator V R presents no 
difficulties and is easily implemented into any conventional Hartree-Fock program. Here 
we used a version of the program MOLPRO, written by W. Meyer and P. Pulay, which was 
modified to run on an IBM 360/44 computer [11]. 

3. Application of the Pseudopotential Formalism to Some Cation-Molecule Complexes 

The interaction of ions with polar molecules has long attracted the interest of many 
authors 1 . For computational reasons the main emphasis in the field of "ab initio" calcu- 
lations was restricted to the interaction of first-row ions like Li + and Be x+ and small ligands 
like H20. 

We thought pseudopotential theory migfit provide a practicable tool in order to overcome 
this restriction. Consequently we tested the above procedure for a number of ion-molecule 
complexes and compared the results with full HFR calculations. Results of Hartree-Fock 
calculations on similar systems may be found in the literature [15-17]. 

1 For a collection of recent data see e.g. Schuster, P., Jakubetz, W., and Marius, W. "Molecular Models 
for the Solvation of Ions and Polar Molecules" in: Topics in Current Chemistry 60, 1-107 (1976). 
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Table 3. Results of pseudopotential and Hartree-Fock 
calculations on H20-X + complexes 

Equilibrium distance Dissociation energy 
ROX + in [a.u.] ~xE in [a,u.] 

HzO_Li + a 3.57 -0.0631 
b c~= 0.182, 3.56 -0.0633 
c 3.46 -0.0675 

a 4.48 - 0 . 0 4 2 8  
b c~ = 1.421, 4.47 -0.0431 
c 4.t 3 --0.0498 

a 5.50 -0.0288 
b a = 5.88, 5.48 --0.0292 

H20-Na + 

H20-K + 

a Pseudopotential calculation. 
b Including alkali-core polarization. Values a for the 

cation polarizabilities were taken from Ref. [ 18]. 
c Hartree-Fock calculation including all electrons. 

The results for equi l ibr ium geometr ies  and dissociation energies obta ined with  the pseudo- 

potent ia l  m e t h o d  are summar ized  in Tables 3 and 4 and compare  well wi th  the results o f  

full H F R  calculat ions also presented  in these tables. 

Figs. 1 and 2 give an impression o f  the shape o f  the energy curves for an approach o f  the 

cat ion along the C2 axes o f  the ligands together  wi th  the electrostat ic  potent ia l  generated 

by the ligands'  charge dis t r ibut ion and some Hartree Fock  results. 

4. Polar izat ion o f  the  Alkali Core  Elec t rons  

Since the core orbitals are exc luded  f rom the variat ional  process, no  polar izat ion o f  core 

electrons can be described by this formalism. The error in t roduced  thereby into  binding 

energies and equi l ibr ium geometr ies  can be es t imated  by the classical e lectrostat ic  formula ,  

i f  the core  e lectrons are represented by a polar izable charge wi th  spherical symmet ry  

loca ted  at the centre  o f  the ion  and in the electr ic  f ield created by the ligand. 

Table 4. Results of pseudopotential and Hartree-Fock 
calculations on H2CO complexes 

Equilibrium distance Dissociation energy 
ROX + in [a.u.] zXE in [a.u.] 

H2CO_Li + a 3.47 -0.0685 
b ce = 0.182, 3.46 -0.0686 
c 3.38 -0.0731 

H2CO_Na + a 4.35 -0.0472 
b cr 1.42, 4,34 -0.0474 

HzCO_K + a 5.35 -0.0322 
b c~ = 5.88, 5.33 --0.0326 

a Pseudopotential calculation. 
b Including polarization correction. Values a for the 

cation polarizabilities were taken from Ref. [181. 
c Hartree-Fock calculation including all electrons. 
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Fig. 1. Alkali-ion water interaction energies (Li +, Na + and K + denote  
curves obtained by pseudopotential  calculations. Li+(HF) and Na+(HF) 
represent the corresponding HFR curves calculated with the same 
basis sets (Table 1); Epo t is the classical electrostatic potential of  the 
H20  molecule derived from the HFR charge distribution; a dipole 
moment  of u = 1.027 a.u. was obtained for H20  with this basis set) 

We calculated the electric field strength from the charge distribution of the free ligand 
according to classical electrostatics. Experimental values of polarizabflities [18] were used 
in the calculation of polarization energy according to formula (7): 

Eool = - �89  2 (7) 

Modified values for equilibrium geometries and dissociation energies are summarized in 
Tables 3 and 4. As expected the binding energies increase and the bond lengths decrease 
somewhat due to electronic core relaxation; on the whole, however, the corrections are 
very small. 
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Fig. 2. Alkali-ion formaldehyde interaction energies (Li +, Na + and K + 
denote curves obtained by pseudopotential  calculations. Li+(HF) 
represents the corresponding HFR curve calculated with the same 
basis set (Table 1); Epo t is the classical electrostatic potential  o f  the 
H2CO molecule derived from the HFR charge distribution; a dipole 
moment  of  g = 1.275 a.u. was obtained for H2CO with this basis set) 
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5. Discussion 

Bond energies and equilibrium geometries obtained from pseudopotential  calculations 
show systematic deviations from the corresponding HFR results. The pseudopotential  
approximation destabilizes the cation molecules complex along the energy curve shown 
in Figs. 1 and 2 thus leading to over-estimated equilibrium distances and reduced dissocia- 
tion energies. As polarization of  the cation cores does not  reduce this error to a large 
extent  we are inclined to assume that  out o f  all approximations made the assumption of  
an effective point  charge potential in Eq. (6) is responsible at least in part for the deviations 
observed. As we mentioned already Eq. (6) introduces an underestimation of  an attractive 
contr ibut ion to the energy of  interaction and therefore leads to a net  destabilization of  
the complex. Finally, it has to be admit ted that the other simplifications made might 
also cause non-negligible contributions to the errors in the energy curves. If  not  too high 
accuracy is required, however, the present approximation provides an appropriate tool for 
investigations giving qualitatively correct answers and a good overall picture for certain 
classes of  large electronic systems for which Hartree-Fock calculations would  be extremely 
time-consuming. 
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